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When multistable displays are presented intermittently
with long blank intervals, their onset perception is
determined by perceptual memory of multistable
displays. We investigated when and how it is formed
using a reverse correlation method and bistable kinetic
depth effect displays. Each experimental block consisted
of interleaved fully ambiguous probe and exogenously
disambiguated prime displays. The purpose of the
former was to “read out” the perceptual memory,
whereas the latter contained purely random
disambiguation sequences that were presented at the
beginning of the prime display, throughout the entire
presentation, or at the beginning and the end of the
presentation. For each experiment and condition, we
selected a subset of trials with disambiguation
sequences that led to a change in perception of either
the prime itself (sequences that modified perception) or
the following fully ambiguous probe (sequences that
modified perceptual memory). We estimated average
disambiguation sequences for each participant using
additive linear models. We found that an optimal
sequence started at the onset with a moderate
disambiguation against the previously dominant state
(dominant perception for the previous probe) that
gradually reduced until the display is fully ambiguous.
We also show that the same sequence leads to an
altered perception of the prime, indicating that
perception and perceptual memory form at the same
time. We suggest that perceptual memory is a

consequence of an earlier evidence accumulation
process and is informative about how the visual system
treated ambiguity in the past rather than how it
anticipates an uncertain future.

Introduction

Our visual system computes a singular representation
of an outside world that we can act upon from
noisy and intrinsically ambiguous sensory inputs
(Yuille & Kersten, 2006). Sometimes sensory inputs
are ambiguous in a balanced way so that two (or
more) perceptual interpretations are equally likely.
When viewed continuously, these stimuli lead to
a phenomenon called multistable perception, as
one of the interpretations becomes dominant at
the stimulus onset but is soon replaced by the
alternative after a spontaneous perceptual switch,
only to become dominant again, get suppressed
again, ad infinitum (or, at least, for as long as you
care to view the stimulus). When these multistable
displays are presented intermittently rather than
continuously, the initial onset perception is not
random but depends on a combination of stimulus
properties (Hupé & Rubin, 2003; Song & Yao, 2009),
long-term factors such as an observer-specific bias
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(Stanley, J., Forte, J. D., Cavanagh, P., & Carter, O. L.,
2011; Wexler, M., Duyck, M., & Mamassian, P., 2015),
and recent perceptual experience.

The effect of recent perceptual experience depends
critically on the duration of the blank interval between
the presentations (Adams, 1954; Klink et al., 2008;
Kornmeier, J., Ehm, W., Bigalke, H., & Bach, M.,
2007, Kornmeier, J., Hein, C. M., & Bach, M., 2009;
Kornmeier & Bach, 2012; Leopold, D. A., Wilke,
M., Maier, A., & Logothetis, N. K., 2002; Maier, A.,
Wilke, M., Logothetis, N. K., & Leopold, D. A., 2003;
Orbach, J., Ehrlich, D., & Vainstein, E. 1963, Orbach,
J., Zucker, E., & Olson, R., 1966). When interruptions
are short (�0.5 s), the perception is stabilized (the same
state tends to be dominant as before the interruption)
through neural persistence, the continued response
of neurons after stimulus offset (Coltheart, 1980;
Pastukhov & Braun, 2013b). For medium interruptions
of about 0.5 to 1.0 s, the perception is destabilized
(the opposite state tends to be dominant at onset)
by perceptual adaptation (Clifford et al., 2007; Wolfe,
1984). Finally, for intervals of about 1 s and longer,
perception is determined primarily by a sensory (also
called perceptual) memory of multistable perception.
The latter is the focus of the current article, as our
goal was to reconstruct how it can be formed via
time-specific disambiguation of a bistable kinetic depth
display (KDE).

Our interest in the perceptual memory of multistable
displays stems from its curious properties and poorly
understood functional role. Although its earliest report
dates back to the middle of the 20th century (Adams,
1954), it has been reported independently at least
three more times (Leopold et al., 2002; Orbach et al.,
1963; Ramachandran & Anstis, 1983), with the last
publication sparking an interest in perceptual memory
and perception during an intermittent presentation in
general. It is a memory mechanism that is distinct from
both neural persistence and adaptation (Pastukhov
& Braun, 2013a). Initially, it was thought to be
a predictive (Maloney, L. T., Martello, M. F. D.,
Sahm, C., & Spillmann, L., 2005) or stabilizing visual
memory similar to iconic memory (Leopold et al.,
2002) or repetition priming (Pearson & Brascamp,
2008). However, its properties make these hypotheses
doubtful. First, it is very weak, evident only when other
forces such as neural persistence and adaptation have
decayed, and even then, its influence is evident only
for multistable displays (de Jong et al., 2012; Sterzer
& Rees, 2008). Second, it can be detected only for
blanks that are substantially longer than most common
interruptions of perception such as involuntary blinks
(Volkmann et al., 1980) and saccades (Volkmann, F.
C., Riggs, L. A., & Moore, R. K., 1980). Third, a
repeatedly presented multistable stimulus must remain
mostly unaltered (Chen & He, 2004; Maier et al., 2003;
Pastukhov, A., Lissner, A., Füllekrug, J., & Braun, J.,
2014; Pastukhov, A., Füllekrug, J., & Braun, J., 2013)

and at the same retinal location (Knapen, T. H. J.,
Brascamp, J. W., Adams, W. J., & Graf, E. W., 2009).
Even when all these constraints are satisfied, one needs
to wait for a change in perceptual dominance to be
completely sure that what is measured is the influence
of perceptual memory rather than that of an intrinsic
observer-specific bias (Carter & Cavanagh, 2007;
Stanley et al., 2011; Wexler et al., 2015).

Taking all the properties listed above, it is unclear
whether perceptual memory of multistable displays can
play any measurable role in daily vision as a predictive
memory. This is why our interest was not in the kind of
stimuli whose perception is facilitated by it but rather
when this memory is formed, as it may shed some light
on the functional role of memory mechanisms that are
active when the trace is encoded. For a future-oriented
memory similar to repetition priming (Kristjánsson &
Campana, 2010), one would expect that it should reflect
mostly the latest perceptual experience. Yet, prior work
showed that it is likely to be formed at the same time as
perception, shortly after the stimulus onset (Pastukhov,
2016). Here, we reexamined this question using a
reverse-correlation method (Brinkman, L., Todorov,
A., & Dotsch, R., 2017).

Below, we present the results of three experiments
showing that effectively the same disambiguation
sequence forms both the perception of the current
stimulus and the perceptual memory that determines
the dominance of the following one.

Methods

Participants

Participants were recruited through advertisements
posted around the University of Bamberg. Seven
participants (six females, one male; age range: 19–33
years) took part in Experiment 1, six participants (four
females, two males; age range: 19–53 years) took part in
Experiment 2, and three female participants (age range:
20–24 years) took part in Experiment 3. Participant
RKH2001WRNO could not finish Experiment 1 due to
a migraine attack and was excluded from the analysis.
One of the authors (HKS1998WRNO) took part in all
experiments.

All procedures were in accordance with the national
ethical standards on human experimentation and with
the Declaration of Helsinki of 1975, as revised in
2008. The study was in full accordance with the ethical
guidelines of the University of Bamberg and was
approved by an umbrella evaluation for psychophysical
testing of the university ethics committee (Ethikrat)
on August 18, 2017. Informed consent was obtained
from all observers before each experimental session. All
participants had normal or corrected-to-normal vision
and normal color vision, all tested by standard tests in
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situ, and were naive to the purpose of the study. For
their participation, observers received a credit within
the framework of a mandatory module of research
participation in accordance with the standards of the
University of Bamberg.

Apparatus and software

Displays were presented on a 55.9-cm diagonal
SyncMaster 2233RZ screen, resolution 1,680 × 1,050,
and refresh rate of 100 Hz. A continuous viewing
distance of 50 cm was ensured by a chin-and-forehead
rest that stabilized the viewing position and angle. A
single pixel subtended 0.04 degrees of visual angle
(dva).

Statistical analysis was performed in R version 4.2.1
(R Core Team, 2022) using RStudio (RStudio Team,
2022). For bootstrapping, we used the “boot” package,
Version 1.3-28 (Canty & Ripley, 2021; Davison &
Hinkley, 1997), as well as the “tidyverse” package,
version 1.3.2 (Wickham et al., 2019). Models were
programmed and sampled using Stan probabilistic
programming language (Carpenter et al., 2017). A
leave-one-out information criterion was computed
using the “loo” library (Vehtari, A., Gelman, A., &
Gabry, J., 2017).

Kinetic depth effect display

OurKDE displays were spheres (size 4 dva) presented
at fixation consisting of 200 white dots that rotated at a
speed of 0.25 Hz (90° per second).

The direction of rotation was disambiguated via
the size of the dots so that the dots on the “front”
surface were larger than the dots on the “back” surface.
A disambiguation strength of 1.0 corresponds to a
maximal difference in dot size (dot sizes ranged from
0.0 to 0.4 dva), whereas a disambiguation strength
of 0.0 corresponds to fully ambiguous displays (all
dots had the size of 0.2 dva). In the figures and text
below, the sign of the disambiguation cues encodes the
direction of rotation relative to the expected direction
of rotation (dominant direction of rotation for a
previously presented fully ambiguous probe display; see
below). Positive disambiguation values mean biasing
perception toward the same direction of rotation as
reported in the previous probe trial, and negative values
are for the opposite direction of rotation.

Reverse-correlation method

Reverse correlation is a technique used to study the
relationship between a stimulus and the response it
produces. It involves presenting a series of stimuli to an
observer, a neuron, or a neural network and measuring

the response to each stimulus. Stimuli that elicited a
response (in the case of a categorical response such as
the presence or absence of a target) or a response that
exceeded a certain predefined threshold (in a continuous
case, such as a spiking rate) are then averaged together,
allowing researchers to see the average stimulus that
leads to the response. Typically, this method is used
when little is known about the stimulus–response
relationship, and therefore, stimuli are designed to be as
diverse as possible and, in an extreme case, completely
random. Prior research used the reverse-correlation
method to identify stimuli that elicit a neural spike
(Ringach & Shapley, 2004; Schwartz, O., Pillow, J. W.,
Rust, N. C., & Simoncelli, E. P., 2006), perception of a
specific letter (Gosselin & Schyns, 2003), or a perceptual
switch in a binocular rivalry display (Lankheet, 2006).

In our study, we followed a general design of
Lankheet (2006) that used a random display sequence
to estimate a disambiguated dynamic binocular rivalry
display that leads to a perceptual switch. We used
bistable kinetic depth displays that were randomly
disambiguated during prime stimulus presentation.
The schematic procedure of the reverse-correlation
method is presented in Figure 1. On each trial, we
generated a random sequence that consisted of either 10
(Experiments 1 and 2) or 20 (Experiment 3) independent
disambiguation segments. Disambiguation strength
for each segment was drawn independently from a flat
distribution of intensities between –1 and 1 at 0.1 steps:
disambiguation strength ∼ {−1, −0.9, −0.8, −0.7, …,
0.7, 0.8, 0.9, 1.0}. Each disambiguation segment lasted
three presentation frames, which corresponds to 30 ms
at a 100 Hz refresh rate. Figure 1A shows an example
of a random sequence consisting of 10 disambiguation
segments. Figure 1B depicts a subset of such random
sequences arranged in no specific order with red circles
and black frames marking out sequences that lead
to a predefined perceptual outcome (e.g., a switch in
the perception of the prime or the following probe),
whereas black circles and no frame mark sequences
that led to stable perception (no change in perception
of prime or of the probe). Finally, Figure 1C shows a
hypothetical average disambiguation sequence that was
associated with the desired perceptual outcome.

Procedure

All three experiments followed the same procedure
and differed only in the timing and duration of a
random disambiguation sequence.

A block consisted of an interleaved presentation
of probe and prime trials (see Figure 2A). Each trial
consisted of a 0.8-s presentation interval (1 s for
Experiment 3) and a 1-s response interval. Participants
reported on the final direction of rotation of a KDE
sphere using a keyboard (left or right, two-alternative
forced choice). When a participant failed to respond
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Figure 1. Reverse-correlation method, schematic procedure. (A) A randomly generated disambiguation sequence for a single trial.
The sequence consists of 10 disambiguation segments (x-axis), each with a randomly chosen disambiguation strength (y-axis).
(B) Randomly generated disambiguation sequences for the first 14 prime trials. Sequences that produced desired outcomes (e.g., a
change in perceptual dominance in the current study) are marked with red dots and black frames. (C) Disambiguation sequences for
selected prime trials are used to compute an average sequence that produced a desired perceptual outcome.

within the designated interval, the following trial was
always a probe. That is, a prime stimulus was presented
only if there was a valid response to a preceding probe.

The purpose of the probe was to read out the current
dominant perceptual state determined primarily by the
perceptual memory of multistable displays (Leopold et
al., 2002). Therefore, during the probe trials, the KDE
sphere was fully ambiguous and not manipulated in
any way. During the prime trials, the KDE sphere was
randomly disambiguated in an attempt to influence
its perceptual state (Experiment 1) or the perceptual
memory that is formed during the prime interval
(Experiments 1–3). The three experiments differed
only in the duration and timing of the disambiguation
sequences (see Figure 2B):

• Experiment 1: Disambiguation was applied during
the first 300 ms out of a total 800-ms presentation
time, 10 independent disambiguation segments (see
Supplementary Video S1).
• Experiment 2: Disambiguation was applied
throughout the entire 300-ms presentation,

10 independent disambiguation segments (see
Supplementary Video S2).
• Experiment 3: Disambiguation was applied during
the initial and final 300 ms of the presentation,
20 independent disambiguation segments,
total presentation duration of 1,000 ms (see
Supplementary Video S3).

Statistical analysis

For analysis, trials were split into probe–prime–probe
“triplets” (see Figure 2A). Depending on perceptual
reports, the triplets were classified into four classes
(Figure 2C): (a) with changes in both prime perception
and perceptual memory, (b) changes only in the
perception of the prime, (c) changes only in perceptual
memory, and (d) no changes in perception of the
prime and perceptual memory. We used primes in
triplets 1 and 3 to compute an average disambiguation
sequence for altering perceptual memory, as well as
primes in triplets 1 and 2 to compute an average
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Figure 2. Experimental procedure. (A) Block presentation sequence. Each block consisted of an interleaved presentation of probe
(fully ambiguous) and prime (randomly disambiguated) bistable spheres. Participants responded on their final direction of rotation
during the response interval. For analysis purposes, we split trials into probe–prime–probe “triplets” with perceptual reports for
leading and trailing probes informing us whether the intermediary prime induced changes in perceptual memory (onset perception of
the following probe). (B) Disambiguation schedule for primes. Each rectangle corresponds to a segment with constant disambiguation
strength. (C) Possible perceptual outcomes within trial triplets with respect to the perception of the prime and perceptual memory
for the trailing probe.

disambiguation sequence for altering prime perception
(Experiment 1).

For behavioral data, we computed 97th
percentile confidence intervals via nonparametric
bootstrapping with 2,000 iterations (Canty &
Ripley, 2021; Davison & Hinkley, 1997). For
individual participants, bootstrapping was performed
separately for each disambiguation segment. For
group confidence intervals, data were sampled
with replacement for each disambiguation segment
across all participants, averages were computed per
participant, and the group average for the sample was
computed.

We summarized posterior distributions of
parameters and posterior predictions using a 97%
credible interval. A credible interval (also known as
a compatibility interval) is a range that contains a
predefined proportion of the probability mass based
on values from the sampled posterior distribution. We
chose to use 97% credible and confidence intervals
because 97 is a prime number.

We used highest posterior density intervals (HPDIs)
to report on posterior distributions of correlation
coefficients, as their distributions are skewed and,
therefore, are poorly characterized by percentile
intervals. HPDI intervals contain the specified
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probability mass (97% in our case) while also being the
densest and, with this, the narrowest posterior interval
(McElreath, 2020). An additional advantage of HPDIs
is that they are guaranteed to always include the most
probable parameter value.

We compared the fitted models using a leave-one-out
(LOO) information criterion (Vehtari et al., 2017). It
computes an expected log predicted density (ELPD)
that expresses the expected out-of-sample deviance
based on the posterior distribution of in-sample
deviance (for details, see Vehtari et al., 2017). The LOO
information criterion is interpreted the same way as
other information criteria, such as Akaike or widely
applicable information criteria, with lower values
indicating better goodness of fit given the penalty
for model complexity. We reported the difference in
expected log-predicted density (�ELPD, mean ±
standard error) relative to the best model (top model in
each table, �ELPD = 0). In addition, we used ELPD to
compute a relative weight for each model. The weights
add up to 1, so a higher weight indicates a better
relative estimated predictive ability of an individual
model.

Model for disambiguation strength as a
function in segment index

A hierarchical linear model for the dependence
of disambiguation strength on segment index with
correlated random intercepts and slopes was defined as
follows:

Biasi ∼ Normal (μi, σ )
μi = αPi + βPi (Inti − 1)[
αPi

βPi

]
∼ MVNormal

([
α
β

]
, S

)

S =
(

σα 0
0 σβ

)
R

(
σα 0
0 σβ

)
R ∼ LJCorr (2)
α ∼ Normal (0, 1)
β ∼ Normal (0, 1)
σα ∼ Exponential (1)
σβ ∼ Exponential (1)
σ ∼ Exponential (1)

where the subscript i indicates ith observation, Pi is
participant identity, and Bias and Int are, respectively,
disambiguation strength and segment index. We
used weakly regularizing priors for all parameters.
Note that to ensure sampling convergence, the actual
model was programmed using a mathematically
equivalent noncentered parameterization via Cholesky
decomposition of the correlation matrix R.

A hierarchical additive linear model

To approximate a smooth average disambiguation
sequence, we used generalized additive models, which
belong to a class of linear statistical models that allow
estimating a smooth relationship of an arbitrary shape
(Wood, 2017). Specifically, additive models use a set of
basis functions, also known as splines, and approximate
a smooth curve using a weighted sum of the basis
functions. Figure 3 illustrates the six functions used in
the study and how they can be used to approximate an
arbitrary relationship.

A hierarchical additive linear model with random
scaling weights was defined as follows:

Biasi ∼ Normal (μi, σ )
μi = M [Inti, Pi]
M = (

B · wspl ine
) · wP

wspl ine ∼ Normal (0, 1)
log (wP) ∼ Normal (0, σP)
σP ∼ Exponential (10)
σ ∼ Exponential (1)

where B is aNintervals×Nsplines matrix with basis functions
(see Figure 3), wspline is a vector of weights for individual
splines (length Nsplines), and wP is a vector of weights
for individual participants (length Nparticipants). Note
that restricted participant-specific scaling weights were
strictly positive and that we used a strong regularizing
prior on their variability to ensure that both the sign
and the magnitude of wspline elements are directly
interpretable. Otherwise, we used weakly regularizing
priors to ensure reliable sampling.

To compare disambiguation sequences between
conditions (one for prime perception, one for probe
perception/perceptual memory in Experiment 1) and
experiments (perceptual memory for Experiment 1
and perceptual memory for Experiment 3), we fitted
the two sequences using three different models. All
models were similar to the one described above but
with a dual set of all parameters (e.g., Mperception and
Mmemory for matrixM, σ perception and σmemory for σ , etc.).
The key difference between models were sets of spline
weights, which were (a) independent (weights sampled
from independent distributions or, equivalently, from
a multivariate normal distribution with an identity
correlation matrix), (b) correlated (see below), or
(c) identical (same weights used for both sequences)
spline weights. In the case of correlated spline weights,
they were sampled from a multivariate normal
distribution with a correlation parameter ρ,

ρ ∼ LJCorr (2) .

The fitted parameter ρ can be interpreted
as a measure of similarity between two sets
of weights. The actual implementation used a
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Figure 3. Cubic splines used in the additive linear model. (A) Six basis functions used in models. (B, C) A smooth curve (black) is
computed as a weighted sum of individual basis functions. Weights for individual basis functions (legend on the right) for which the
sum of basis functions approximates a straight line (B) or a bell shape (C).

mathematically identical noncentered parameterization
of multivariate normal distribution via Cholesky
decomposition.

Results

Experiment 1

The primary purpose of our first experiment was
to validate the reverse-correlation method for our
display and procedure. As a test, we sought to estimate
a disambiguation sequence that would reliably bias
the perception of the prime stimulus, so that it rotates
in the direction opposite to the preceding probe. The
advantage here is that prior research already established
such a sequence: Start with the disambiguation in the

opposite direction and reduce its strength, making the
stimulus fully ambiguous. Various specific solutions
exist within this general framework, differing in the
exact disambiguation schedule. For example, one can
use a very strong but brief constant disambiguation, a
setup known as “flash facilitation” (Brascamp, Knapen,
Kanai, van Ee, & van den Berg, 2007). Alternatively,
the disambiguation can be applied for longer periods
and gradually reduced to achieve the same effect
(Pastukhov, Burkel, & Carbon, 2020). Note that the
opposite dominance can also be achieved through “flash
suppression” (Wolfe, 1984) when strong disambiguation
in favor of the same perceptual state is applied for
longer periods before the fully ambiguous stimulus is
presented (see also Brascamp et al., 2007).

To reconstruct a disambiguation sequence for prime
perception, we randomly disambiguated the initial
300 ms of the prime stimulus (10 disambiguation
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Figure 4. Experiment 1, change in perception of the prime. Average disambiguation strength per segment. y-axis: Negative
disambiguation strength values mean bias against the expected direction of rotation, and positive values indicate bias in the same
direction of rotation as the expected one. x-axis: Top row is the index of the disambiguation segment; bottom row is its onset time in
milliseconds. Circles and error bars—mean and 97% confidence interval; lines and stripes—mean and 97% credible interval for
posterior predictions. The text above each plot identifies a participant and shows the number of trials when prime dominance was
altered, the total number of trials, and the proportion of trials when prime perception has changed.

segments, 30 ms each; see Method for details) and
computed an average disambiguation strength per
segment for trials when participants reported altered
dominance of the prime. The procedure failed for two
of six participants, as they reported very few changes
to prime (it was changed in 45 of 12,000 trials or 0.4%
of trials for participant CWH2003WRNO and in 129
of 8,000 trials or in 1.6% of trials for IBE1999WRNO),
and average disambiguation sequence did not show any
systematic deviation from zero (data and analysis are
not shown but available at the online repository).

For the remaining four participants, there was
a clear pattern consistent with prior work: a
moderate negative disambiguation that is gradually
reduced until the stimulus is fully ambiguous
(Figure 4). To quantify this sequence, we fitted it using
a hierarchical linear model with correlated random
intercepts and slopes and a hierarchical additive linear
model with six cubic splines and random participant

scaling weights. The latter model has the advantage
of being able to estimate any relationship and was
by far a better model (the difference in an expected
log-predicted density computed via a LOO information
criterion was �ELPD = 398.2 ± 29.8). The posterior
predictions for the model are plotted alongside the data
in Figure 4.

The sequence depicted in Figure 4 is an average of
many noisy sequences. Therefore, it shows when the
disambiguation was most effective in influencing a
perceptual state of the prime: approximately during the
initial 120 to 150 ms. This suggests that the dominant
state of the ambiguously rotating sphere is established
within that time, which well matches an estimate
obtained by a different method (Pastukhov & Klanke,
2016). Interestingly, the disambiguation sequence
is consistently nonmonotonic with a stronger bias
(i.e., stronger influence) during the second (30–60
ms) than during the first (0–30 ms) disambiguation

Downloaded from jov.arvojournals.org on 03/17/2023



Journal of Vision (2023) 23(3):10, 1–16 Pastukhov, Koßmann, & Carbon 9

Figure 5. Experiment 1, change in perception of the probe. Average disambiguation strength per segment. y-axis: Negative
disambiguation strength values mean bias against the expected direction of rotation, and positive values indicate bias in the same
direction of rotation as the expected one. x-axis: Top row is the index of the disambiguation segment; the bottom row is the onset
time in milliseconds. Circles and error bars—mean and 97% confidence interval; lines and stripes—mean and 97% credible interval for
posterior predictions. The text above each plot identifies a participant and shows the number of trials when probe dominance
(perceptual memory) was altered, the total number of trials, and the proportion of trials when probe perception has changed.

interval (difference in posterior distribution of
interval disambiguation cues strength −0.023 [−0.032,
−0.015], mean and 97% credible interval). We cannot
offer an explanation for this difference, but it is
certainly of interest for future studies on the precise
timing of perceptual inference (e.g., in magneto- and
electroencephalography (M/EEG) research).

The data that we collected also provided us an
opportunity to estimate a disambiguation sequence
that influenced the perception of the following probe
(i.e., a disambiguation sequence that modified a
perceptual memory that determined, among other
factors, the dominant perception in the following
probe). The results are presented in Figure 5
and look remarkably similar to a disambiguation
sequence that forms perception rather than memory
(Figure 4). To quantify this similarity, we fitted both
sets of data—disambiguation segments associated
with the change in perceptual dominance in the prime

and ones associated with the change in perceptual
dominance in the probe—using an additive linear
model assuming (a) independent, (b) correlated, or
(c) common spline weights. A model comparison via
the LOO information criterion showed little difference
between the fits with a small but significant preference
for the simpler model (common single disambiguation
sequence; posterior predictions for that model were
used in Figure 5). The difference was �ELPD = −3.5 ±
1.6 for the independent weights model and �ELPD =
−2.7 ± 1.4 for the correlated-weights model. The latter
model also showed a strong and significant correlation
between two sets of weights ρ. However, the strength of
the disambiguation cues was significantly smaller when
perceptual memory was changed than for perceptual
dominance of the prime (for all participants, 99.9–100%
of posterior samples of scaling weights were smaller
for the probe-change set than for the prime-change set;
see Figure 6). In other words, the same disambiguation
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Figure 6. Experiment 1, the posterior distribution of participant-specific weights that scaled the common curve for trials when the
prime or probe changed. For all participants, 99.9–100% posterior scale samples for the probe set were smaller than for the prime set.

sequence was effective in forming both perception and
perceptual memory.

Experiment 2

Our first experiment reconstructed a disambiguation
sequence that altered perceptual memory for kinetic
depth displays, which was remarkably similar to a
disambiguation sequence that altered the perceptual
state of the prime itself. However, this similarity may
stem from the procedure itself, as the disambiguation
sequence spanned only the first 300 ms of the prime
presentation interval. It is, therefore, possible that
a better disambiguation sequence exists but that it
requires an offset or mid-presentation disambiguation.
Accordingly, we repeated Experiment 1 but modified
the prime display so that it consisted only of a
300-ms-long disambiguation sequence. Results of our
first experiment and prior work (Pastukhov & Klanke,
2016) suggest that this should be sufficient for the
perception of the prime to be established. At the same
time, as the disambiguation sequence spans the entire
presentation, it can be effective at both the onset and
the offset of the presentation.

The average disambiguation sequences are
presented in Figure 7. What is clear is that the
shorter disambiguated prime was far less efficient in
alternating perceptual memory and there was no clear
systematic pattern. There was no discernible pattern
for the four participants with few perceptual memory
changes. The two participants (AHB2011WRNO and

SSC2003WRNO) who have the highest proportion of
changes in perceptual memory do show opposite effects.
Taken together, it suggests that disambiguation patterns
for these two participants are likely to be a chance
occurrence and, therefore, our second experiment failed
to extend our understanding of perceptual memory
formation.

Experiment 3

In our final experiment, we repeated the
measurement, but now we used two distinct
disambiguation intervals: a 300-ms (10 disambiguation
segments) sequence at the onset of the prime display
and an additional 300-ms (also 10 disambiguation
segments) sequence at the offset. The middle part (400
ms) was fully ambiguous. This way, we could recover
a disambiguation sequence that is specific to either or
both onset and offset.

The results are summarized in Figure 8 with the
onset disambiguation sequence in the top row and the
offset disambiguation sequence in the bottom row. Both
sequences were fitted independently using an additive
linear model employed in Experiment 1. There was no
discernible pattern for the offset disambiguation, as
evident by an overlap with zero of both 97% confidence
(data) and credible (model predictions) intervals.

In agreement with prior work (Pastukhov, 2016),
we found that it is the time shortly after the onset that
is critical for the formation of perceptual memory.
Here, we observed a disambiguation sequence that is
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Figure 7. Experiment 2, change in perception of the probe. Average disambiguation strength per segment. y-axis: Negative
disambiguation strength values mean bias against the expected direction of rotation, and positive values indicate bias in the same
direction of rotation as the expected one. x-axis: Top row is the index of the disambiguation segment; the bottom row is the onset
time in milliseconds. Circles and error bars—mean and 97% confidence interval. The text above each plot identifies a participant and
shows the number of trials when probe dominance (perceptual memory) was altered, the total number of trials, and the proportion
of trials when probe perception has changed.

remarkably similar to that computed in Experiment
1. We quantified this similarity by fitting the onset
disambiguation sequence for the current experiment
together with the probe-specific disambiguation
sequence from Experiment 1 using three models that
assumed (a) independent, (b) correlated, or (c) common
spline weights (see also Experiment 1 for similar
analysis). Here, we found that the correlated-weights
model better accounted for the data (�ELPD = −0.9
± 0.8 for the independent-weights model and �ELPD
= −13.9 ± 5.7 for the common-weights model). The
correlated-weights model showed a strong correlation
between two curves: ρ = 0.58/0.68 [−0.05, 0.98]
(mean/median, 97% highest posterior density interval).
Interestingly, as in Experiment 1, we observed that
the second disambiguation interval is more negative
than the first (difference in the posterior distribution
of interval disambiguation −0.032 [−0.066, −0.003]),
suggesting that this was not a fluke. Moreover, this

curiously matches prior work on perceptual memory in
KDE that showed that an optimal probe corresponds
to perception shortly after but not immediately at the
onset, with a similar timing difference to that between
the first and the second disambiguation intervals
(Pastukhov, 2016); see also Kornmeier and Bach (2005,
2012) for similar timing in Necker cube displays.

In short, we found that perceptual memory is
modified by a disambiguation sequence at the onset of
presentation that biases perception toward an opposite
perceptual state.

Discussion

The purpose of this work was to reconstruct a
disambiguation sequence that would modify the
perceptual memory of multistability for kinetic
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Figure 8. Experiment 3, change in perception of the probe. Average disambiguation strength per segment for onset (top row) and
offset (bottom row) disambiguation periods. y-axis: Negative disambiguation strength values mean bias against the expected
direction of rotation, and positive values indicate bias in the same direction of rotation as the expected one. x-axis: Top row is the
index of the disambiguation segment; bottom row is the onset time in milliseconds (some values are omitted due to visual crowding).
Circles and error bars—mean and 97% confidence interval; lines and stripes—mean and 97% credible interval for posterior
predictions. The text above each plot identifies a participant and shows the number of trials when probe dominance (perceptual
memory) was altered, the total number of trials, and the proportion of trials when probe perception has changed.

depth effect displays. We used a reverse-correlation
method and show that an optimal sequence starts
at the onset (periods shortly before the offset had
no effect) with a moderate disambiguation opposite
to the previously dominant state, which is gradually
reduced until the display is fully ambiguous (see
Experiments 1 and 3). This disambiguation sequence
is similar to that which alters the perception of
the prime itself but for the magnitude: A reliable
disambiguation sequence for perception was stronger
(see Experiment 1). This does not necessarily prove
that the perceptual memory cannot be formed without
altering the perceptual state of the prime, but this seems
to be the most reliable way of doing it based on the
reverse-correlation method. Thus, to form a perceptual
memory of multistable displays, one must gently
disambiguate/bias the initial perception of the previous
stimulus.

Although the initial research (Pastukhov & Braun,
2013b; Pearson & Clifford, 2005) was focused on
the dichotomy between the strongly disambiguated
(“normal vision,” does not produce perceptual memory)

and fully ambiguous (“rivalrous vision,” produces it),
our results suggest a more gradual dependence. Given
the two known extremes and our results showing that
moderate disambiguation works the best, it is likely that
the strength of an induced memory trace is proportional
to the ambiguity or, vice versa, inversely proportional
to certainty about the perception. This returns us to the
question that we raised in the Introduction: What could
be the functional role of such a memory?

The initial hypothesis, which still looks reasonable
at first glance, is that since the processing of more
ambiguous (hence, more challenging) stimuli is more
effortful, it is advantageous to retain information to
simplify perceptual inference in the future. However,
as explained in detail in the Introduction, perceptual
memory plays little, if any, role in daily vision, and
its usefulness as a future-oriented memory, which the
hypothesis suggests, is very questionable. Moreover,
results of Experiments 1 and 3 and the earlier study
(Pastukhov, 2016) show that perceptual memory is
formed shortly after the stimulus onset and at the same
time the perception forms; see also Kornmeier and Bach
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(2005, 2012), who showed similar timing for perceptual
resolution of the Necker cube stimulus. This is hard to
reconcile with an idea of future facilitation, as it is the
latest and not more distant in time perceptual states
that should be of relevance.

We suggest that the bias created by the perceptual
memory trace serves no meaningful purpose but could
be a side effect of earlier activity. In a sense, this is
similar to an effect of perceptual adaptation. Here,
the negative bias (an adaptation aftereffect) reflects
a current fatigued state due to an earlier activity of
a corresponding neural ensemble. Therefore, it can
be used to infer this earlier activity and serve as a
memory, a trace of the past, although whether the
perceptual adaptation has a functional memory role in
perception is debated (Clifford et al., 2007; Pastukhov,
García-Rodríguez, et al., 2013). Unlike perceptual
adaptation that is present for all displays, perceptual
memory is associated with a prior experience of fully or
partially ambiguous stimuli. This suggests that it is the
ambiguity and the challenges associated with resolving
the perception of such stimuli that could be the key
to understanding perceptual memory. Specifically,
challenging stimuli like that (noisy, ambiguous, etc.)
cannot be resolved quickly as the sensory evidence
does not allow for an unequivocal inference. In cases
like these, evidence needs to be accumulated over time
(Gold & Shadlen, 2002), and the more challenging
(balanced) the ambiguity is, the more evidence is
required to resolve the stalemate. Hence, the presence
of perceptual memory may be indicative of an earlier
engagement of memory mechanisms that assisted
in accumulating the sensory evidence necessary for
perceptual disambiguation.

The idea of accumulating perceptual evidence to
produce a singular response is well studied within
the framework of perceptual decision-making (Gold
& Shadlen, 2007). There exist many models that
characterize the decision-making processes and link
them to various brain regions (Mulder, van Maanen, &
Forstmann, 2014). Despite their differences, all models
agree that evidence accumulation is a prerequisite for
any perceptual decision. Given a difference in time
scales and the level at which competition between
possible hypotheses needs to be resolved, it is unlikely
that the same neural circuits are involved. However,
similar mechanisms are likely to underpin evidence
accumulation for sensory regions, just as similar but
independent mechanisms underpin the disambiguation
of multistability for different perceptual features
(Brascamp, Becker, & Hambrick, 2018; Pastukhov,
Kastrup, Abs, & Carbon, 2019).

It is also possible that similar mechanisms are
involved in so-called serial dependence in visual
perception (Cicchini, Mikellidou, & Burr, 2018) when
the perception of a stimulus is biased by stimuli
viewed previously. It is a positive or attractive effect

so that for oriented Gabors stimuli, the perception
of the tilt in the current trial is biased toward the
orientation of Gabor patches in previous trials.
This effect coexists with a negative tilt aftereffect so
that the overall effect depends on context, timing,
and so on (Fornaciai & Park, 2019), same as for
the interplay between neural persistence, perceptual
adaptation, and perceptual memory for multistable
displays (Pastukhov & Braun, 2013a). Importantly,
serial dependence in visual perception is distinct from
perceptual memory and appears to have different
components for perceptual and decisional levels (Bae &
Luck, 2020; St. John-Saaltink, Kok, Lau, & De Lange,
2016). Nonetheless, it is also remarkably similar in that
it is a weak effect and hence its fairly recent discovery
(Fischer & Whitney, 2014), which is surprising for such
a widespread perceptual effect (Czoschke et al., 2019;
Fischer & Whitney, 2014; Papadimitriou, Ferdoash, &
Snyder, 2015). Also, it appears to be present throughout
multiple levels of perception (Cicchini et al., 2018) and
shares the same inverse dependence of its strength
on the stimulus (Cicchini, Mikellidou, & Burr, 2017).
Uncertainty likely necessitates the accumulation of
evidence (Bliss, Sun, & D’Esposito, 2017), leading to
a lingering trace that can be detected using sensitive
enough stimuli. As with the perceptual decision-
making framework, it is unlikely that the exact same
mechanisms are involved, but it is likely that similar
requirements for accumulation tap into similar memory
circuits.

In short, we suggest that perceptual memory
of multistable displays may be one of many
manifestations of memory mechanisms that underpin
the accumulation of sensory evidence across different
levels of the processing hierarchy. As such, it is unlikely
to tell us how the sensory system predicts the future
but can be highly informative about how it treated
uncertainty in the past.

Conclusion

We demonstrate that multistable perception and
perceptual memory of multistable displays can be
formed by almost identical disambiguation sequences
with the only difference being the disambiguation cues’
strength (be gentle if you need to induce perceptual
memory). We suggest that this memory is a perceptual
echo of an earlier evidence accumulation process,
and as such, it is informative about how the visual
system treated ambiguity in the past rather than how it
anticipates an uncertain future.

Keywords: perceptual memory, reverse correlation,
multistability, kinetic depth effect, structure from motion,
psychophysics
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